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The Engineering of LISA Pathfinder – the 
quietest Laboratory ever flown in Space

Overview:

 Suppression of disturbances on-board the LISA Pathfinder “lab” :

 Gravitational
 Accelerations
 Test Mass Charge
 Thermal
 Magnetic

 For each case:

 Engineering Approach
 Predicted vs In-flight Performance
 Implications for LISA

Selected topics presented from an “industrial” perspective
Airbus DS (UK & Germany)



Gravitational Environment (I)

 Main gravitational parameters to be controlled:
 DC differential and absolute accelerations 

(linear and angular)
 Gravitational stiffness
 AC accelerations

 Engineering approach:

 Spacecraft design – eg no moving 
components, material choice

 Verification by analysis (modelling) 
based on measured inputs

 Strict gravitational control 
throughout manufacture – eg
O(104) mass measurements

 Final mass balancing of residual 
imbalance



Gravitational Environment (II)

 Predicted vs In-flight performance*

Parameter Pre‐flight Estimate In‐flight 
Measurement

Requirement Requirement
Met

Ax ‐1.7e‐10
‐1.8e‐10

(1.4±5.0)e‐10 (TM1)
(‐3.9±2.2)e‐10 (TM2)

<1.0e‐8 Yes

Ay ‐1.5e‐9
‐1.5e‐9

(‐1.0±0.2)e‐9 (TM1)
(‐1.9±0.2)e‐9 (TM2)

<1.0e‐8 Yes

dAx <5.5e‐10 <1.0e‐10 <6.5e‐10 Yes

dAy <3.9e‐10 5.0e‐10 <1.1e‐9 Yes

dAz <2.8e‐10 0.1e‐10 <1.85e‐9 Yes

θ ‐0.4e‐9
+0.4e‐9

‐0.6e‐9 (TM1)
‐0.1e‐9 (TM2)

<13.5e‐9 Yes

η +3.1e‐9
‐1.2e‐9

+2.9e‐9 (TM1)
‐1.3e‐9 (TM2)

<11.5e‐9 Yes

φ  +0.8e‐9
‐0.2e‐9

+1.0e‐9 (TM1)
‐0.1e‐9 (TM2)

<8.0e‐9 Yes

*Absolute acceleration in Z parallel to Solar Radiation Pressure –
dedicated experiment required to disentangle contributions



Gravitational Environment (III)

 Effect of cold gas depletion (total mass 9.6kg) is  well understood:

 Selective propellant depletion is currently being used to control gravitational 
environment

Feed 
Branch 
swap

Slope change as a result of Feed Branch swap:
 Fit “by eye” 6.2x10-13ms-2/day.
 Gravitational prediction 6.6x10-13ms-2/day

Agreement to <10%



Gravitational Environment (IV)

 Pre-flight estimated contribution 
to acceleration noise not
realised

→  dAx significantly better than 
expected

 Implications for LISA:

 No improvements to approach necessary
 Effect of cold gas propellant depletion is understood and manageable –

if adopted for LISA
 Considerations and improvements:

 Moving parts (eg periodic High Gain Antenna re-pointing) will need 
assessment

 (Partial) verification of gravitational requirements by test could 
result in time & cost savings, and reduce risks



Accelerations (I)

 Spacecraft (SC) shields Test Masses (TMs) from external disturbances
 Now relative SC – TM motion has to be minimised in order to reduce 

residual SC – TM couplings

 Engineering approach:

 Drag-free Attitude Control System (DFACS) – a set of algorithms that 
controls both TMs and SC in 15DOFs (!)
 Relies on low-noise sensors & actuators
 Robust control from initial TM release to Science Mode



Accelerations (II)

 In-flight performance:

 Initial conditions in orbit much worse than 
predicted
 Initial offsets / velocities exceeded by 

factor up to  60 / 8
 DFACS was nevertheless robust 

enough to capture the TMs
 Transitions to science mode very robust 

and repeatable
 Science mode performance better than 

predicted:
 Sensor & actuator noise models 

conservative
 Offsets and misalignments 

conservative

Set of Mode Transitions from ACC3 to SCI12

SCI12 Performance during Commissioning



Accelerations (III)

 In-flight performance:

 Relative SC/TM motion 
can be taken as proxy for 
residual SC accelerations 
– imagine that TMs are 
“perfect” free-fall 
reference

 At low frequencies: SC 
motion many orders of 
magnitude quieter than 
Earth surface motion 
(seismic noise)
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Accelerations (IV)

 Implications for LISA:

 DFACS science mode performance goes a long way towards 
LISA requirements

 DFACS performance model has been verified and can be 
extended for LISA

 Robustness of mode transitions could be improved further:
 Uni-directional thruster configuration efficient but limits 

authority in critical phases. Additional thrusters would 
enhance margins

 Margins for suspension actuation should be increased  → 
would account for disturbance uncertainties 

 Excellent low frequency TM isolation – one of the (two) main 
reasons for going to space!



Test Mass Charge (I)

 Net electrostatic charge on Test Masses (eg from cosmic rays) results in 
unwanted SC – TM interactions → needs to be controlled

 Engineering approach:

 Charge Management System (CMS):
 Provides a robust way to reduce unwanted charges on the Test 

Masses
 Automatic on-board algorithms to achieve regular discharging 

without much ground interaction



Test Mass Charge (II)

 Predicted vs In-flight Discharging 
Performance
 On-board charge estimation 

performance in line with pre launch 
predictions

 Closed loop discharge control 
performance also in line with predictions

 On-board closed loop fast discharge 
now used regularly for LTP and DRS 
operations

TM2 Closed Loop Discharge Performance

Estimation Control



Test Mass Charge (III)

 Implications for LISA

 On-board charge estimation has been verified for LISA
 Very flexible and can be adjusted for the use of different 

degrees of freedom
 If possible, optical readout should be used

 Principle of closed loop discharge control has been verified
 Robustness of closed loop discharge control could potentially be 

improved → e.g. optimization of light injection to avoid need for 
DC biasing

 Review UV harness installation QA (!)



Thermal Environment (I)

 Thermal stability at low frequency is essential to realise required noise 
performance

 Engineering approach:

 L1 orbit – very stable environment
 Nested SC design – main features:

 No unit or heater switching during nominal operations
 Purely passive thermal control (heaters ON or OFF)
 Extensive thermal test campaigns

Solar Array on Standoffs:
Minimises coupling due to solar 
radiation fluctuations



Thermal Environment (II)
 In-flight performance

 Solar Array: very slow drift due to 
increasing Sun distance

 LCA Cage: ≈10-3K/√Hz at 1mHz

 Optical Bench: ≤3x10-5K/√Hz 
down to 0.1mHz

0 1 2 3 4 5 6
x 105

103

104

105

106

107

108

109

110

111

112

A
m

pl
itu

de
  [

C
]

Time  [s]

 

 
SA 1
SA 2
SA 3

ΔT/Δt = ‐0.4K/6days



Thermal Environment (III)

 Implications for LISA

 Stable external environment helps – LISA will also benefit from this
 Solar Array shadowing of spacecraft body essential for thermal 

stability
 Considerations and potential improvements:

 “Nested” LPF spacecraft design helps – LISA will have large 
telescope apertures

 Combination of (fixed) trim heaters is not as flexible as desired. 
Quiet PID control is possible.

 Do not place PCDU near thermally most sensitive equipment (!) 



Magnetic Environment (I)

 Non-zero magnetic TM properties couple to local magnetic environment 
generating acceleration noise. Need to control:
 DC field and field gradients
 Fluctuating fields and field gradients

 Approach:
 By design – avoid magnetic parts / EMC design guidelines
 Unusual frequency range – extensive test campaign at unit and 

spacecraft level

LPF SC at IABG

IS FEE SAU

OBC



Magnetic Environment (II)

 Predicted vs In-flight performance
 Local DC fields of order 1µT as 

predicted

 Low frequency field fluctuations are 
uniform across SC – can be 
attributed to Sun. 0 1 2 3 4 5 6
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Magnetic Environment (III)

 Pre-flight estimated contribution to 
acceleration noise not realised

→  Local DC gradient estimate was 
dominated by measurement 
uncertainty!

 Implications for LISA
 No showstoppers / real problems identified
 The following should be improved:

 DC magnetic gradient testing (in particular for payload 
elements in close proximity)

 Low frequency behaviour of high frequency AC lines 
should be characterised

 New equipment (eg TWTA) still needs to be characterised



Summary / Conclusions
 LISA Pathfinder as a laboratory has been demonstrated to be

 Well controlled and understood from a gravitational point of view
 Exceptionally quiet as far as residual accelerations are concerned
 Extremely quiet from a thermal point of view
 Sufficiently quiet from a magnetic point of view

 The above has been achieved thanks to a combination of:
 orbit choice around L1
 clever Payload & Spacecraft design
 excellent communication within the whole collaboration
 a bit of luck 

 No problems identified for LISA – although a few details could be improved

We are ready to go and keen to start building LISA!



LISA Pathfinder

Thank you!
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