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The Engineering of LISA Pathfinder — the
gquietest Laboratory ever flown in Space

Overview:

= Suppression of disturbances on-board the LISA Pathfinder “lab” :

= Gravitational
= Accelerations
= Test Mass Charge
=  Thermal
= Magnetic
= Foreach case:
= Engineering Approach
= Predicted vs In-flight Performance —
= Implications for LISA
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Selected topics presented from an “industrial” perspective
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Gravitational Environment (1)

= Main gravitational parameters to be controlled:

. DC differential and absolute accelerations
(linear and angular)

. Gravitational stiffness
= AC accelerations

= Engineering approach:

= Spacecraft design — eg no moving
components, material choice

= Verification by analysis (modelling)
based on measured inputs

= Strict gravitational control
throughout manufacture — eg
O(10%) mass measurements

= Final mass balancing of residual
imbalance
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Gravitational Environment (ll)

Predicted vs In-flight performance*

Parameter Pre-flight Estimate In-flight Requirement
Measurement
Ax -1.7e-10 (1.4£5.0)e-10 (TM1) <1.0e-8
-1.8e-10 (-3.942.2)e-10 (TM2)
Ay -1.5e-9 (-1.0+0.2)e-9 (TM1) <1.0e-8
-1.5e-9 (-1.9£0.2)e-9 (TM2)
dAx <5.5e-10 <1.0e-10 <6.5e-10
dAy <3.9e-10 5.0e-10 <1.1e-9
dAz <2.8e-10 0.1e-10 <1.85e-9
0 -0.4e-9 -0.6e-9 (TM1) <13.5e-9
+0.4e-9 -0.1e-9 (TM2)
N +3.1e-9 +2.9€-9 (TM 1) el e=0==
-1.2e-9 -1.3e-9 (TM2) =
¢ +0.8e-9 +1.0e-9 (TM1) <8.0e-9
-0.2e-9 -0.1e-9 (TM2)

*Absolute acceleration in Z parallel to Solar Radiation Pressure —
dedicated experiment required to disentangle contributions

Requirement
Met
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Gravitational Environment (l1)

= Effect of cold gas depletion (total mass 9.6kg) is well understood:
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Slope change as a result of Feed Branch swap:

= Fit “by eye” 6.2x10-"3ms-?/day. — } Agreement to <10%
= Gravitational prediction 6.6x10-3ms?/day

= Selective propellant depletion is currently being used to control gravitational

environment
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Gravitational Environment (V)

107

T TTTTTT T I
Inflight Perfformance

= Pre-flight estimated contribution
to acceleration noise not
realised

Dominant noise due to

10"°L actuation voltage

[ fluctuations — "
proportional to dAx -

— dAXx significantly better than
expected

celeration ASD [ms2 Hz ”2]

Different

= Implications for LISA:

= No improvements to approach necessary

= Effect of cold gas propellant depletion is understood and manageable —
if adopted for LISA

= Considerations and improvements:

= Moving parts (eg periodic High Gain"Antenna re-pointing) will need
assessment

= (Partial) verification of gravitational requirements by test could

result in time & cost savings, and reduce risks -
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Accelerations (1)

Spacecraft (SC) shields Test Masses (TMs) from external disturbances
Now relative SC — TM motion has to be minimised in order to reduce
residual SC — TM couplings
Engineering approach:
= Drag-free Attitude Control System (DFACS) — a set of algorithms that
controls both TMs and SC in 15DOFs (!)
= Relies on low-noise sensors & actuators

= Robust control from initial TM release to Science Mode

Optical
Metrology
System

Charge

Management —
System —
Test Mass
Inertial Sensor
Sensing &
/7 Actuation
Micropropulsion @AlRBUS
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Accelerations (II)

= In-flight performance: e |
- Initial conditions in orbit much worse than ~* I .
predicted | |

- Initial offsets / VGlOCitieS exceeded by ) :'.‘..'.'Z ..... ............. e B ........... ............... ....................... ................. i
factorupto 60/8 ~ e e

- DFACS was nevertheless robust =

71 amesch ook M e e
4000 E 7
Time snce Start of Data Seffs|

enough to capture the TMs
Set of Mode Transitions from ACC3 to SCI12

Transitions to science mode very robust
and repeatable

Differential Acceleration Estimate (x, - x )

Science mode performance better than
predicted:

. Sensor & actuator noise models
conservative

«  Offsets and misalignments 0 8
conservative -y

SCI12 Performance during Commissioning
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Accelerations (ll1)

In-flight performance:

= Relative SC/TM motion
can be taken as proxy for
residual SC accelerations
— imagine that TMs are
“‘perfect” free-fall

reference
At low frequencies: SC 102 A/fv?/ ——SC<->TM1
motion many orders of /\;w’\’ —— SC<->TM2
magnitude quieter than _ I
Earth surface motion 10 %\\T \ ~
(seismic noise) g _3 . ST -

10 — 10 10

Frequency [Hz]
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Accelerations (1V)

Implications for LISA:

DFACS science mode performance goes a long way towards
LISA requirements

DFACS performance model has been verified and can be
extended for LISA

Robustness of mode transitions could be improved further:

= Uni-directional thruster configuration efficient but limits
authority in critical phases. Additional thrusters would
enhance margins

= Margins for suspension actuation should be increased —
would account for disturbance uncertainties

Excellent low frequency TM isolation —one of the (two) main_
reasons for going to space!

—
——
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Test Mass Charge (1)

= Net electrostatic charge on Test Masses (eg from cosmic rays) results in
unwanted SC — TM interactions — needs to be controlled
= Engineering approach:
= Charge Management System (CMS):

= Provides a robust way to reduce unwanted charges on the Test
Masses

= Automatic on-board algorithms to achieve regular discharging
without much ground interaction

Optical
Metrology
System

™
Charge

Management Sen ~ &

dTM <0 ﬂ
pam—— |SUK _ e V=V Vi
?\ +

Test Mass

Inertial Sensor EH ISUK
Sensing &
Actuation
Micropropulsion @ AIRBUS
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Test Mass Charge (1)

Estimation Control

Predicted vs In-flight Discharging

Performance

= On-board charge estimation .. | =
performance in line with pre launch . e
predictions - =———
= Closed loop discharge control = 4 4 =

performance also in line with predictions :

- 1l
= On-board closed loop fast discharge | == R N
now used regularly for LTP and DRS AR i e A
operations - =

TM2 Closed-Loop Discaée Erformance
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Test Mass Charge (1)

Implications for LISA

On-board charge estimation has been verified for LISA

= Very flexible and can be adjusted for the use of different
degrees of freedom

= |f possible, optical readout should be used
Principle of closed loop discharge control has been verified

Robustness of closed loop discharge control could potentially be
improved — e.g. optimization of light injection to avoid need for
DC biasing

Review UV harness installation QA (!)
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Thermal Environment (1)

= Thermal stability at low frequency is essential to realise required noise
performance

= Engineering approach:

= L1 orbit — very stable environment

Solar Array on Standoffs:

= Nested SC design — main features: Minimises coupling due to solar

radiation fluctuations

Ve
(I nmmy

LCA Supports:
Low conductance material fo
reduce the effect of

femperature variations at the
structure interface

_ Upper Closure Panel:
[T | 10 layer MLI pack, Minimises

radiative heatto the cylinder

environment
T T T T

\ LCA Floor: Covered by

External MLI

LTP Thermal Shield: Single
layer VDA Kapton minimises
radiative heat from the
cylinderenvironment to the
LCA enclosure

Bare CFRP Cylinder:
Any heat from leaking in from
the sun shieldis rejected
away fromthe LCA case fo
the spacecraft

[T

o

= No unit or heater switching during nominal operations
= Purely passive thermal control (heaters ON or OFF)
= Extensive thermal test campaigns @’QFIQICBEESSPACE
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Thermal Environment (1)

- In-flight performance " H B — =T
- Solar Array: very slow drift due to i;:
increasing Sun distance — 2 B
E - AT/At = -0.4K/6days
- LCA Cage: =10-3K/\Hz at 1mHz s P I )
105 : e ———
- Optical Bench: <3x10-5K/VHz T Y TR
Time [s] x 10°

down to 0.1mHz

OiNGtation Thermal Noise Amplitude Spectral Density with t : 15
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Thermal Environment (I11)

= Implications for LISA

= Stable external environment helps — LISA will also benefit from this

= Solar Array shadowing of spacecraft body essential for thermal
stability

= Considerations and potential improvements:

“Nested” LPF spacecraft design helps — LISA will have large
telescope apertures

= Combination of (fixed) trim heaters is not as flexible as desired.
Quiet PID control is possible.

= Do not place PCDU near thermally most sensitive equipment (!)
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Magnetic Environment (1)

= Non-zero magnetic TM properties couple to local magnetic environment
generating acceleration noise. Need to control:

= DC field and field gradients
= Fluctuating fields and field gradients
= Approach:
= By design — avoid magnetic parts / EMC design guidelines

@) () @3

= Unusual frequency range — extensive test campaign at unit and
spacecraft level

IS FEE SAU
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Magnetic Environment (ll)

1.2

1

= Predicted vs In-flight performance

= Local DC fields of order 1uT as
predicted —_—
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= Low frequency field fluctuations are
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Magnetic Environment (lll)
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—In-flight Performance
——Magnetic Estimate ||
: _

= Pre-flight estimated contribution to
acceleration noise not realised

-

o
-
=

Dominated by IMF
coupling to local DC
/ field gradient

— Local DC gradient estimate was
dominated by measurement
uncertainty!

—h
c.
-
-
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Differential Acceleration ASD [ms2 Hz™?]
Pz

\\

10 10" 10°
Frequency [Hz]

= Implications for LISA
= No showstoppers / real problems identified
= The following should be improved:

= DC magnetic gradient testing (in particular for payload —
elements in close proximity) —

= Low frequency behaviour of high*frequency AC lines
should be characterised

= New equipment (eg TWTA) still needs to be characterised
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Summary / Conclusions

= LISA Pathfinder as a laboratory has been demonstrated to be

= Well controlled and understood from a gravitational point of view
= Exceptionally quiet as far as residual accelerations are concerned
= Extremely quiet from a thermal point of view

= Sufficiently quiet from a magnetic point of view

= The above has been achieved thanks to a combination of:
= orbit choice around L1
= clever Payload & Spacecraft design
= _excellent communication within the whole collaboration

= a bit of luck © it

| —
——

= No problems identified for LISA —although a few details could be improved

We are ready to go and keen to start building LISA!@ AIRBUS
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